

Fine-Grained Parallelism in cmsRun

Lessons learned in the attempt
Marc Paterno
13 May 2010

Project purpose

● “fine-grained” portion of effort to bring
concurrency to cmsRun.

● Fine-grained means:
● Only local modifications to code.
● No change in results allowed, only change in

performance.

● Investigate use of one of the popular “toolkits”
for concurrent programming
● Intel TBB: excellent library, but intrusive
● OpenMP: “simple” design, not intrusive

Plan of attack

● Identify a portion of CMS code that is suitable
for localized concurrency:
● takes significant time, enough to be worth the effort

– tend toward higher-level functions,
● is not inherently serial,
● has no accidental serialization, or can have such

removed – tend toward lower-level functions,
● deals with sufficient data to benefit from OpenMP-

style concurrency (e.g., parallelization of loops).

● See if application of OpenMP improves speed.

● First looked at reconstruction executable
● ttbar simulation sample
● CMSSW_3_1_0, arch=slc4_ia32_gcc432

● Revisited with newer executable, running HLT
● Simulated L1 trigger skim sample
● CMSSW_3_2_1, arch=slc4_ia32_gcc432
● CMSSW_3_3_0, arch_slc5_amd64_gcc432

cmsRun in HLT

● Analysis of profiling data turned up one good
candidate: EcalRawToRecHitProducer::produce
(~12% of total program time)

● The following slide shows the (trimmed of rare
path) call paths

● Investigation of these routines revealed much
(accidental?) serialization – local changes could
not introduce useful parallelization.

12%

12%

12%

2% 4% 1% 2%

12%

2%

6% 3% 1% 1%

Hard-to-parallelize code structure

● Common usage of OO techniques makes for
code that is not easy to parallelize
● OO techniques encapsulate state for ease of

understanding the code...
● but encapsulated state, when also shared, prevents

parallelization.

● Much of this sharing is accidental not essential.
● Maybe we need to learn from the functional

programming community
● pass state to algorithms when we want parallelism.

cmsRun in reconstruction

● Output functions use considerable time but are not
good candidates for local multithreading
● parallel-capable i/o formats would be interesting

● As anticipated, tracking takes the most time.
● GroupedCkfTrajectoryBuilder::advanceOneLayer,

and functions it calls, take 17% of program time.
● Analysis of this code also shows great complexity.

● Each box is a different function

● Each color is a different library

● Function at top is advanceOneLayer

● This is a section of the
trimmed call tree;call paths
with fewer than 100
samples were removed.

Low-level concurrency for the future

● Accidents of current code prevent concurrency.
● We need to “think parallel” up front.
● We need to investigate parallel algorithms and data

structures for higher-level tasks.
● We need to devise and enforce easy-to-follow rules

for making modules thread-safe.

● We need to understand how to interact with
non-thread-safe utilities:
● limit exposure in our own code
● provide thread-safe patterns of use
● work toward achieving thread-safety in utilities

What can we learn from others?

● Functional programming community
● encapsulate higher-order functions
● pass algorithm state to algorithms (reduce

accidental sharing, make essential sharing explicit)
● allows for optimizations that can be proven correct

● “Parallel” programming languages (Chapel, F-
Script, Fortran 2008)
● Use whole aggregate transformations & algorithms
● Allow for libraries to provide means of parallelization

How do we do this in C++?

● Common wisdom: get it right first, then make it
fast
● But we have learned we can't afford to make it too

slow first – must think parallel early

● Maybe we haven't done enough template
programming – abstractions at the right level
(per Stepanov's Elements of Programming)

● New C++ has valuable features
● local (lambda) functions
● better metaprogramming support

Thanks.

Trivial OpenMP example

● g++-mp-4.3 -o hello_mp -fopenmp hello_mp.cc

#include <omp.h>
#include <iostream>
int main () {
 int th_id, nthreads;
#pragma omp parallel private(th_id)
 {
 th_id = omp_get_thread_num();
 std::cout << "Hello World from thread" << th_id << std::endl;
#pragma omp barrier
 if (th_id == 0) {
 nthreads = omp_get_num_threads();
 std::cout << "There are " << nthreads << " threads" << std::endl;
 }
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

